Research Article

Enhanced Na⁺-K⁺-2Cl⁻ Cotransporter 1 Underlies Motor Dysfunction in Huntington’s Disease

Yi-Ting Hsu, MD,1,2 Ya-Gin Chang, BS,3,4 Yu-Chao Liu, PhD,3 Kai-Yi Wang, BS,3 Hui-Mei Chen, BS,5 Ding-Jin Lee, BS,1 Sung-Sen Yang, MD, PhD,6 Chon-Haw Tsai, MD, PhD3,7* and Yijuang Chern, PhD1,3,5*

1 PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taipei, Taiwan
2 Department of Neurology, China Medical University Hospital, Taichung, Taiwan
3 Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
4 Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
5 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
6 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
7 Brain Research Center, National Yang-Ming University, Taipei, Taiwan

ABSTRACT: Background: Altered γ-aminobutyric acid signaling is believed to disrupt the excitation/inhibition balance in the striatum, which may account for the motor symptoms of Huntington’s disease. Na-K-2Cl cotransporter-1 is a key molecule that controls γ-aminobutyric acid-ergic signaling. However, the role of Na-K-2Cl cotransporter-1 and efficacy of γ-aminobutyric acid-ergic transmission remain unknown in Huntington’s disease. Methods: We determined the levels of Na-K-2Cl cotransporter-1 in brain tissue from Huntington’s disease mice and patients by real-time quantitative polymerase chain reaction, western blot, and immunocytochemistry. Gramicidin-perforated patch-clamp recordings were used to measure the E_g in striatal brain slices. To inhibit Na-K-2Cl cotransporter-1 activity, R6/2 mice were treated with an intraperitoneal injection of bumetanide or adeno-associated virus-mediated delivery of Na-K-2Cl cotransporter-1 short-hairpin RNA into the striatum. Motor behavior assays were employed. Results: Expression of Na-K-2Cl cotransporter-1 was elevated in the striatum of R6/2 and Hdh150Q/7Q mouse models. An increase in Na-K-2Cl cotransporter-1 transcripts was also found in the caudate nucleus of Huntington’s disease patients. Accordingly, a depolarizing shift of E_g was detected in the striatum of R6/2 mice. Expression of the mutant huntingtin in astrocytes and neuroinflammation were necessary for enhanced expression of Na-K-2Cl cotransporter-1 in HD mice. Notably, pharmacological or genetic inhibition of Na-K-2Cl cotransporter-1 rescued the motor deficits of R6/2 mice. Conclusions: Our findings demonstrate that aberrant γ-aminobutyric acid-ergic signaling and enhanced Na-K-2Cl cotransporter-1 contribute to the pathogenesis of Huntington’s disease and identify a new therapeutic target for the potential rescue of motor dysfunction in patients with Huntington’s disease. © 2019 International Parkinson and Movement Disorder Society

Key Words: bumetanide; GABAergic signaling; inflammation; mutant Huntington; NKCC1
Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disease characterized by its clinical manifestations of cognitive deficits, involuntary movements, and psychiatric symptoms. Expanded CAG repeats in exon 1 of the huntingtin (htt) gene cause neuronal cell death, occurring most severely in the striatum of HD brains.\(^1\) Despite the extensive studies devoted to the characterization of HD pathogenesis and the development of effective therapies, little is currently available for the treatment of HD patients.

The balance between the excitatory glutamatergic system and the inhibitory \(\gamma\)-aminobutyric acid (GABA)-ergic system within the corticostriatal circuitry is critical for normal control of motor function, cognition, and behavior.\(^2\) Dysfunction of either the glutamatergic system or the GABAergic system has been implicated in a spectrum of neuropsychiatric disorders, such as schizophrenia, autism spectrum disorder, Parkinson’s disease, major depressive disorder, and HD.\(^3\) Conversely, modulation of the GABAergic system has potential implications in the treatment of several neuropsychiatric disorders.\(^4,5\) GABA, the major inhibitory neurotransmitter in the adult brain, exerts its action via synaptic and extrasynaptic GABA\(_A\) receptors (GABA\(_A\)Rs) to mediate phasic and tonic inhibition, respectively.\(^6\) The hyperpolarizing inhibitory action of the GABA\(_A\) receptor depends on the proper maintenance of the transmembrane chloride gradient, which is mainly controlled by 2 cation-chloride cotransporters: Na-K-2Cl cotransporter (NKCC1) and K-Cl cotransporter (KCC2).\(^7\) NKCC1 mediates chloride uptake in immature neurons and causes high intracellular chloride levels and a depolarizing GABA response. As neurons mature, KCC2 becomes the principal chloride channel, switches the excitatory nature of GABAergic transmission through several mechanisms.\(^11\) In several HD mouse models, detrimental astrocytic activities have been demonstrated to impair neuronal functions and contribute to neuronal damage in HD.\(^12-14\) Poor potassium buffering in astrocytes may contribute to the overactivation of neuronal NKCC1,\(^16\) and proinflammatory cytokines may regulate the expression of NKCC1.\(^17,18\) Here, we hypothesized that the expression of NKCC1 might be altered in the inflammatory environment in HD brains, and we aimed to investigate whether the polarity of GABAergic signaling was altered and contributed to HD pathogenesis. To test this hypothesis, we first determined the expression and function of NKCC1 in different HD mouse models and postmortem human caudate nuclei by biochemical and/or electrophysiological methods. We further modulated the NKCC1-regulated GABAergic signaling in HD mice by pharmacological and genetic inhibition of NKCC1 and assessed the HD phenotypes.

Materials and Methods

More detailed information on materials and methods is provided in SI Materials and Methods section.

Animals and Treatments

Three transgenic mouse models (R6/2 [B6CBA-Tg (HDexon1)62Gpb/J], N171-82Q [B6C3F1/Tg (HD82Gln)81DbO/J], GFAP-HD [FVB/N-Tg(GFAP-HTT*160Q)-31Xil/J]) and 1 knock-in HD mouse model (Hdh\(^{150Q/7Q}\) [B6.129P2-Hdhmt2Detl/J]) were originally obtained from the Jackson Laboratory (Bar Harbor, ME). Transgenic R6/2 mice contain exon 1 of the human \(htt\) gene harboring an expansion of the CAG repeat (181 ± 4).\(^{19}\) The N171-82Q mice express a cDNA fragment encoding an N-terminal fragment of Huntingtin (HTT) with 82 glutamines driven by the mouse prion protein promoter.\(^{20}\) GFAP-HD mice express CAG-expanded HTT in glial cells under the control of the human glial fibrillary acidic protein (GFAP) promoter.\(^{14}\) Hdh\(^{150Q/7Q}\) knock-in mice express the endogenous \(htt\) gene harboring 150 CAG repeats.\(^{21}\) Mice were genotyped by polymerase chain reaction (PCR)\(^{13}\) and were housed at the Institute of Biomedical Sciences Animal Care Facility (Taipei, Taiwan) under a 12-hour light/dark cycle. All behavioral experiments were performed during the light phase. To avoid the potential subtle differences in the course of neurodegeneration, we chose to do all experiments, except for Figure S1, using female mice. To confirm that the upregulation of NKCC1 in the brain of HD mice is sex independent, we tested the male HD mice (R6/2, 10 weeks old) and found that upregulation of NKCC1 also occurred in the striata of male HD mice. All animal experiments were performed in accordance with protocols approved by the Academia Sinica Institutional Animal Care and Utilization Committee (Taipei, Taiwan).

For intracerebroventricular (icv) delivery of XPro1595 (a generous gift from Xencor, Monrovia, CA), R6/2 and their littermate control (wild-type) mice were treated with XPro1595 (0.08 mg/kg/day) or saline using osmotic mini-pumps (micro-osmotic pump 1004, brain infusion kit 3; Alzet, Cupertino, CA) into the lateral ventricle from the age of 6.5 to 10.5 weeks, as described elsewhere.\(^{22}\)

For systemic treatment with bumetanide, R6/2 mice and their littermate control mice were randomly assigned to the bumetanide group (0.2 mg/kg of body
weight in 0.3% dimethylsulfoxide [DMSO]; Sigma, St. Louis, MO) and the vehicle group (0.3% DMSO in saline) and treated daily for 6 weeks by intraperitoneal injection from the age of 7 weeks.

For the in vivo delivery of adeno-associated viral vectors (AAVs) carrying short-hairpin RNA (shRNA) knockdown of NKCC1, R6/2 mice and their littermate control mice at age 5 weeks were intrastriatally injected with the indicated AAV, as described elsewhere and detailed in the SI Methods section.

Human Brain Samples

Postmortem human brain tissue of the caudate nucleus was obtained from 2 sources. Brain sections of the caudate nucleus were obtained from the National Institute of Child Health and Human Development Brain and Tissue Bank for Developmental Disorders (University of Maryland, Baltimore, MD) and analyzed by immunofluorescence staining. RNA from the caudate nucleus for quantitative PCR (qPCR) was obtained from the Human Brain and Spinal Fluid Resource Center (VA West Los Angeles Healthcare Center, Los Angeles, CA). The demographic data and neuropathology of subjects are summarized in Table S1.

RNA Purification and Real-Time qPCR

RNA was isolated from mouse brains and human postmortem tissue and converted to cDNA using methods previously described. mRNA level was determined by quantitative PCR. The ΔΔCt method was used to determine the relative fold expression of mRNA, which was then normalized to that of the wild-type group. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA were used as the reference genes for the mouse and human postmortem brain samples, respectively.

Western Blot Analysis

Protein samples were collected from cells or dissected brain regions of the mouse with lysis buffer, separated by 4%-10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and then transferred to polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were blocked and incubated overnight at 4°C with primary antibodies followed by peroxidase-conjugated secondary antibodies. Protein expression was calculated by normalizing the protein signal to that of valosin-containing protein (VCP) or tubulin as the loading control.

Immunohistochemical Staining

Sections from the human caudate nucleus or mouse striatum were subjected to immunohistochemistry as previously described. The sections were incubated with the indicated primary antibody followed by incubation with the corresponding secondary antibody. Fluorescent images were acquired using an LSM780 confocal microscope with ZEN software. For the detection of polyQ-expanded HTT, coronal sections (20 μm) of mouse striatum were subjected to immunohistochemistry with an anti-HTT antibody (EM48; Millipore Corporation, Billerica, MA) and a Vectorstain ABC immunoperoxidase kit (Vector) with 3,3-diaminobenzidine (DAB) (Sigma-Aldrich) as a chromogen. Three pictures spaced evenly throughout the striatum were taken using a CCD camera (Axio Imager Z1 Microscope, Zeiss), and 9 pictures from 3 sections for each animal were analyzed. The immunostaining patterns and quantification of NKCC1 and mutant Huntingtin (mHTT) expression were analyzed with the aid of MetaMorph software (Universal Imaging, West Chester, PA).

Slice Preparation and Perforated-Patch Recording

To avoid perturbation of the intracellular chloride concentration, we evaluated the GABA reversal potential (E_GABA) of medium spiny neurons (MSNs) using the gramicidin-perforated patch-clamp recordings, detailed in the SI Methods. Notably, monitoring membrane leakage is critical during the measurement of E_GABA. The integrity of the perforated patch configuration was assessed in cells by adding Alexa Fluor 594 to the pipette solution. To monitor the stability of the recording, we recorded epifluorescence images of the same cell before and after measurement of E_GABA. Only experiments with the fluorescent dye Alexa Fluor 594, restricted to the recording pipette, were considered to ensure the integrity of the perforated patch.

Behavioral Assessment

Mice were tested for limb-clasping behavior by holding the mice from the tail and suspending them for 30 seconds. The degree of limb clasping was scored using the following rules: 0, no clasping; 1, clasping by either the fore- or hind limbs; and 2, clasping by both the fore- and hind limbs. Motor coordination was monitored using a rotarod apparatus assay (Ugo Basile, Comerio, Italy), as described elsewhere. Briefly, mice were tested at a constant speed of 12 rpm over a period of 2 minutes. Each mouse was tested 3 times per week, and each test contained 3 trials for a maximum of 2 minutes for each trial. The time of the latency to fall was automatically recorded.

Statistical Analysis

Data are represented as the mean ± SEM. All tests were performed using SigmaStat (version 3.5, Systat Software, Richmond, CA). The Student t test (2-tailed, 95% confidence interval) or the Mann-Whitney test was used to compare the difference between the 2 groups. One-way or 2-way analysis of variance (ANOVA) was...
used when the differences among multiple groups were compared, followed by the appropriate post hoc tests, as indicated in the figure legends. A $P < 0.05$ was defined as significant.

Results

NKCC1 Expression Is Increased in the Striatum of HD

To characterize the role of NKCC1 in HD pathogenesis, we first examined NKCC1 level in a transgenic mouse model of HD (R6/2).

NKCC1 protein level in the striata of R6/2 mice at the manifest stage (10.5 weeks old) was higher than that of wild-type mice (Figs. 1A and S1). The extent of the increase in NKCC1 protein became more evident when the disease progressed to the final stage in R6/2 mice. A marked increase in the transcript level of NKCC1 was also observed in the striata of R6/2 mice (Fig. 1B), suggesting that the enhanced expression of NKCC1 may occur at the transcriptional level. Of note, expression of NKCC1 was also upregulated in the cortex, a brain area that is also greatly affected by HD, but not in the hippocampus of R6/2 mice (Fig. S2). We further found the increased NKCC1 protein in the synaptosomal fractions prepared from the HD striatum was much more significant than in the unfractionated lysates (Fig. 1C). We suggest that the upregulation of NKCC1 in the brains of R6/2 mice might predominantly occur in neurons.

We next evaluated whether NKCC1 level was also enhanced in Hdh150Q/7Q mice, a knock-in mouse model. Western blot analysis showed that the amount of NKCC1 protein in the striata of Hdh150Q/7Q mice was also higher than in wild-type mice (Fig. 1D). To determine whether the aberrantly elevated levels of the NKCC1 protein observed in HD mice were an authentic pathogenesis of HD, we performed experiments to determine whether this abnormality could be found in HD postmortem brains. NKCC1 level in the caudates of HD patients was assessed by double immunofluorescence staining of NKCC1 and...
NeuN. A trend toward an increase in NKCC1 was found in neurons (i.e., NeuN-positive cells) of HD patients \((n = 3, \) Table S1) when compared with those from non-HD subjects \((n = 4, P = 0.053; \) Fig. S3). We also determined the transcript levels of NKCC1 in the postmortem caudates of 4 HD patients and 5 non-HD subjects \((n = 4, P = 0.053; \) Fig. S3). Reverse-transcription polymerase chain reaction (RT-PCR) analyses showed that HD patients exhibited more NKCC1 transcripts than did non-HD subjects in the caudate (Fig. 1E).

Striatal Neurons of R6/2 Mice Exhibit a Positive Shift in \(E_{\text{GABA}} \)

A previous study showed that upregulation of NKCC1 in neurons results in elevated intracellular [Cl\(^-\)] and a shift of \(E_{\text{GABA}} \) toward more depolarized potentials.\(^3\) To assess whether the enhanced expression of NKCC1 resulted in chloride dysregulation in HD striatal neurons, we directly measured the reversal potential for GABAAR-mediated Cl\(^-\) currents \((E_{\text{GABA}}) \) of MSNs in striatal brain slices prepared from wild-type and HD (R6/2) mice using the gramicidin-perforated patch-clamp technique.\(^2\) With the fluorescent dye Alexa Fluor 594 in the patch pipettes, the integrity of the cell membrane was confirmed by epifluorescence illumination (Fig. 2A). The measurement of GABA\(_\Delta\)R-mediated Cl\(^-\) currents was conducted by holding the MSNs at different membrane potentials in the voltage clamp (Fig. 2B). The value of \(E_{\text{GABA}} \) from each MSN was obtained from a polynomial fit (Fig. 2B). The \(E_{\text{GABA}} \) recorded from the MSNs of wild-type mice was not correlated with the mouse age \((r^2 = 0.002) \), whereas the \(E_{\text{GABA}} \) recorded from R6/2 mice showed a positive correlation with mouse age \((r^2 = 0.466) \); see Figure 2C. The average \(E_{\text{GABA}} \) from R6/2 MSNs after the manifest stage was significantly more depolarized than the \(E_{\text{GABA}} \) of wild-type MSNs (Fig. 2D). To evaluate whether the positive shift of the \(E_{\text{GABA}} \) was because of enhanced NKCC1, we further determined the \(E_{\text{GABA}} \) of neurons treated with a NKCC1 inhibitor, bumetanide. Bumetanide significantly changed the \(E_{\text{GABA}} \) in neurons from R6/2 mice but not in those of wild-type (WT) mice at the manifest stage (Fig. 2D). Notably, the resting membrane potential...
of MSNs in the wild-type and R6/2 mice did not significantly differ (wild type, -70 ± 8 mV, n = 7; R6/2, -72 ± 6 mV, n = 9; P = 0.83). Consistent with previous results, elevated NKCC1 led to a progressive increase in the EGABA in the MSNs of R6/2 mice during disease progression.
Neuroinflammation Contributes to the Abnormal Upregulation of NKCC1 in HD Brains

Although aberrant upregulation of NKCC1 was observed in neurons, western blot analysis showed that there was no change in the NKCC1 level in the striatum of a mouse model (N171-82Q), which expressed mHTT only in neurons, at the end stage of disease (16 weeks old, Fig. 3A). Conversely, GFAP-HD mice, which expressed mHTT only in astrocytes, had more NKCC1 protein in the striata than did wild-type mice at the manifest stage (18-24 months old; Fig. S4), but not before the onset of motor deficits (16 weeks old; Fig. 3B). Most importantly, significant NKCC1 upregulation was observed in the striata of mice (14-16 weeks old) that expressed mHTT in both neurons and astrocytes (designated N171-82Q/GFAP-HD mice; Fig. 3C). These data collectively suggest that mHTT-dysregulated astrocytes may have mediated NKCC1 upregulation in neurons and that the simultaneous expression of mHTT in neurons greatly sensitized this process.

Previous studies have demonstrated that expression of mHTT in astrocytes leads to alterations in multiple astrocytic properties. 12,13,31 We were particularly interested in the potential involvement of proinflammatory cytokines in the NKCC1 upregulation observed in HD brains because of the recently recognized association between inflammation and cation chloride cotransporters. 17,18 To evaluate the effect of astrocytic inflammation on neuronal NKCC1 expression, we first prepared astrocyte-conditioned medium (ACM) that was harvested from...
primary wild-type and R6/2 cortical/striatal astrocytes (30 days in vitro) that were treated with cytokines for 72 hours. The effect of these ACMs on the expression of NKCC1 in a striatal progenitor cell line (STHdhQ7) was determined by western blot analysis. As shown in Figure 3D, STHdhQ7 cells expressed higher levels of NKCC1 protein when treated with ACM collected from astrocytes that were activated with cytokines than from astrocytes without cytokine activation. Notably, ACM collected from R6/2 astrocytes treated with cytokines evoked greater elevation in NKCC1 than did ACM collected from wild-type astrocytes treated with cytokines, which may be ascribed to the higher release of inflammatory mediators by R6/2 astrocytes than by wild-type astrocytes during stimulation with cytokines.\(^\text{13}\)

To consolidate the role of cytokines in NKCC1 upregulation, we treated STHdhQ7 cells with a well-characterized proinflammatory cytokine (tumor necrosis factor alpha [TNF-\(\alpha\)]). Treatment with TNF-\(\alpha\) was sufficient to increase the protein and transcript levels of NKCC1 in STHdhQ7 cells (Fig. 3E,F). Given that treatment with TNF-\(\alpha\) could activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-\(\kappa\)B) pathway,\(^\text{12}\) we hypothesized that activated NF-\(\kappa\)B might regulate NKCC1 transcription. To test this hypothesis, STHdhQ7 cells were treated with TNF-\(\alpha\) in the presence of an NF-\(\kappa\)B inhibitor (BAY 11-7082).
RT-qPCR revealed that BAY11-7082 effectively reduced the NF-kB-evoked \(\text{NKCC1} \) upregulation (Fig. 3F), confirming the importance of NF-kB signaling.

To validate that neuroinflammation plays a critical role in \(\text{NKCC1} \) upregulation in vivo, we infused a dominant-negative inhibitor of soluble TNF-\(\alpha \) (XPro1595)\(^{33} \) into the brains of HD mice (R6/2) using a protocol that has been shown to reduce the production of proinflammatory cytokines in the brains of R6/2 mice and to reduce their motor dysfunction.\(^{22} \) We found that chronic treatment with \(\text{XPro1595} \) in the brain markedly reduced \(\text{NKCC1} \) protein level in the striatum (Fig. 3G). Collectively, these findings suggest that neuroinflammation may mediate the enhanced \(\text{NKCC1} \) expression in HD brains.

Inhibition of \(\text{NKCC1} \) Ameliorates the Motor Phenotype in HD Mice (R6/2)

To evaluate whether \(\text{NKCC1} \) upregulation contributes to HD progression, we inhibited the function of \(\text{NKCC1} \) using bumetanide\(^{30} \) and assessed disease progression by measuring motor function, body weight, and life span. R6/2 mice received bumetanide (0.2 mg/kg of body weight, daily intraperitoneal injection) starting from the presymptomatic stage (7 weeks old). Administration of bumetanide significantly attenuated motor impairment in R6/2 mice, assessed by the rotarod performance and foot-clasping tests (Fig. 4A,B). The beneficial effects were detected as early as in weeks 8-9, in which the elevation of \(\text{NKCC1} \) protein was not yet at peak levels (shown to occur near 12 weeks; Fig. 1A). This suggests that \(\text{NKCC1} \) protein function is inhibited by bumetanide. Previous studies have demonstrated that phosphorylation of \(\text{NKCC1} \) at threonine residues activates \(\text{NKCC1} \), leading to the active uptake of chloride.\(^{34} \) Our data show that a higher level of phosphorylated \(\text{NKCC1} \) was found in the striata of R6/2 mice when compared with WT mice. Treatment with bumetanide significantly decreased the phosphorylation of \(\text{NKCC1} \) in the striata of R6/2 mice at age 9 weeks, when the beneficial effect was observed (Fig. S5). Thus, bumetanide may prevent \(\text{NKCC1} \) activation via modulating phosphorylation and subsequently rescue the impaired motor function in HD mice.

When compared with those treated with vehicle, chronic treatment with bumetanide also slightly decreased the size of the mHTT aggregates by approximately 10% without affecting the number of mHTT aggregates (Fig. 4C-F). Nonetheless, no improvement in reduced body weight, shortened life span, reduced expression of \(\text{DARPP32} \), or increased expression of \(\text{NKCC1} \) by bumetanide was observed (Figs. S6 and S7). In addition, no significant effect of bumetanide on the level of proinflammatory cytokines was observed either (Fig. S8), suggesting that there was no significant loop impact of a \(\text{NKCC1} \) inhibitor on the development of the neuroinflammatory pathway in the HD striatum.

Suppression of \(\text{NKCC1} \) in the brains of R6/2 mice was also conducted by direct injection of AAV harboring shRNA against \(\text{NKCC1} \) (ie, sh\(\text{NKCC1} \)) into the striata of R6/2 mice at age 5 weeks. The efficiency of AAV-mediated knockdown of \(\text{NKCC1} \) was assessed in vitro and in vivo. Exogenous expression of sh\(\text{NKCC1} \) reduced the amount of \(\text{NKCC1} \) protein in N2A cells by approximately 50% (Fig. S9A). We also examined the expression of \(\text{NKCC1} \) transcript in the striata of mice infected with viruses carrying sh\(\text{NKCC1} \) or the control virus (ie, sh\(\text{Con} \)). As shown in Figure S9B, HD mice (R6/2) infected with the control virus had higher \(\text{NKCC1} \) than did WT mice, as predicted. Infection of R6/2 mice with viruses harboring sh\(\text{NKCC1} \) reduced the amount of \(\text{NKCC1} \) transcripts to a level indistinguishable from that of WT mice. Improvements in motor function were observed with the genetic suppression of \(\text{NKCC1} \) in the striata of R6/2 mice (Fig. 5A,B). Taken together, our data suggest that upregulation of \(\text{NKCC1} \) during HD progression contributes to the motor impairment observed in HD.

Discussion

Progressive motor dysfunction is a major functional disability of HD and is often the reason for nursing home placement.\(^{35,36} \) Tetrabenazine and its modified form (deutetrabenazine), which reduce the amount of dopamine in the brain, are the only 2 drugs approved by the Food and Drug Administration for the treatment of motor dysfunction in HD. Adverse effects such as depression and suicidal behaviors can limit the clinical use of tetrabenazine and possibly deutetrabenazine as well.\(^{37} \) There is clearly an unmet need for drugs available to patients with HD. To date, the pathophysiological role of GABAergic signaling in motor control during HD progression has attracted only limited attention. Earlier studies have reported several GABAergic abnormalities in HD brains caused by altered GABA\(_{\text{A}}\)R-mediated synaptic currents, disruption of GABA\(_{\text{A}}\)R trafficking, and reduced expression of GABA\(_{\text{A}}\)R.\(^{8,10} \) Nonetheless, the aberrant polarity and poor efficacy of GABAergic signaling in the striatum during HD progression have not been extensively characterized. The coordinated activities of \(\text{NKCC1} \) and \(\text{KCC2} \) control neuronal chloride homeostasis and are responsible for the polarity of GABAergic signaling.\(^{7} \) We detected enhanced expression of \(\text{NKCC1} \) in the cortices and striata but not in the hippocampi of R6/2 mice, whereas Dargaei et al.\(^{18} \) found increased \(\text{NKCC1} \) expression in both the cortices and hippocampi of R6/2 mice. The factors that contribute to this seemingly discrepant finding are currently unknown. First, the R6/2 mice used in the present study and those of Dargaei et al.\(^{18} \) differed in their CAG repeat number (181 ± 4 and 120 ± 5 CAG repeats, respectively), age (12 and 7 weeks, respectively), and sex (female only and both sexes, respectively). Next,
R6/2 mice are susceptible to the development of seizures, which was reported to induce high levels of hippocampal NKCC1 and might be subjected to different procedures of mouse handling in different animal facilities. Some of these factors might contribute to the discrepancy in the hippocampal NKCC1 level in R6/2 mice.

Decreased expression of KCC2 has been previously reported when increased NKCC1 was observed and may enable GABA to become excitatory. Likewise, our group and Dargaei et al reported reduced KCC2 expression in the cortices, striata, and hippocampi of multiple HD mouse models. Consistently, we and Dargaei et al reported that the stronger depolarization of \(E_{GABA}\) was mainly because of the increased expression of NKCC1 in R6/2 mice rather than the reduced expression of KCC2, because acute application of an NKCC1 inhibitor, bumetanide, restored normal \(E_{GABA}\) values. Notably, NKCC1 inhibition by bumetanide rescued the memory deficits and motor phenotype of R6/2 mice. Moreover, we found that genetic downregulation of striatal NKCC1 rescued the motor defect in R6/2 mice, indicating the importance of NKCC1 in HD pathogenesis. These findings suggest that the efficacious GABA\(_A\)R-mediated inhibitory signaling in HD brains may become less effective.

An intriguing finding from the present study is that the expression of mHTT in astrocytes alone was sufficient to trigger NKCC1 upregulation (GFAP-HD mice) and that expression of mHTT in neurons greatly facilitated the NKCC1 upregulation triggered by mHTT-expressing astrocytes (N171-82Q/GFAP-HD mice). The results from both in vitro and in vivo experiments suggest that proinflammatory cytokines released from astrocytes during inflammation in the final stage of HD in mice are likely to trigger NKCC1 upregulation in neurons at the transcriptional level. Our findings are consistent with several earlier studies that have reported that production of proinflammatory cytokines was able to upregulate NKCC1 expression on vascular endothelium, lung epithelial cells, and astrocytes. Nonetheless, the mechanism by which inflammatory cytokines (eg, TNF-\(\alpha\)) regulate the expression of NKCC1 remains elusive. Interestingly, an earlier study showed that proinflammatory mediators (such as TNF-\(\alpha\)) may alter gene profiles by activating NF-\(\kappa\)B-dependent transcription. Bioinformatics analysis using the PROSCAN and PROMO programs predicted that there are NF-\(\kappa\)B-binding sites in mouse and human NKCC1 promoters. In addition, previous studies have shown that inhibition of NF-\(\kappa\)B may reduce the activity or protein expression of NKCC1. The involvement of NF-\(\kappa\)B in the regulation of NKCC1 expression in response to inflammation and/or mutant HTT-evoked stresses is of interest and requires further investigation. In the present study, we found that an inhibitor of NF-\(\kappa\)B (BAY 11-7082) significantly blocked the TNF-\(\alpha\)-induced upregulation of the NKCC1 transcript, demonstrating that NF-\(\kappa\)B activation might increase the transcriptional levels of NKCC1. Khoshnan and colleagues have previously reported that expression of mHTT enhances the NF-\(\kappa\)B pathway by direct binding to and activation of the IKK\(\beta\) complex, which results in activation of NF-\(\kappa\)B and aggravation of mHTT-evoked toxicity in neurons. In astrocytes, mHTT enhances NKCC1-mediated inflammatory responses that greatly contribute to HD pathogenesis. Inflammation is an important detrimental element in HD, as blockage of TNF-\(\alpha\) using XPro1595 in vivo leads to significant beneficial effects on disease progression in HD mice. Our findings suggest that the aberrant activation of NF-\(\kappa\)B-mediated inflammation may alter neuronal function via upregulation of NKCC1 in neurons and impair neuronal responses to GABAergic stimuli. Because neurons expressing mHTT exhibit abnormally enhanced NF-\(\kappa\)B activity, NF-\(\kappa\)B-mediated actions (such as NKCC1 upregulation) in response to proinflammatory cytokines are likely to be sensitized. This effect may explain the observation that HD astrocyte-mediated NKCC1 upregulation was greatly facilitated when there was also mutant HTT in neurons. In addition to astrocyte-mediated neuroinflammation, microglia have long been recognized as an important source of neuroinflammation in HD pathogenesis. The relative contributions of astrocytes and microglia to neuroinflammation and neuronal NKCC1 regulation remain unknown. The complex interplay between these cells in HD pathogenesis also needs further investigation.

To acutely monitor \(E_{GABA}\), we performed gramicidin-perforated patch-clamp recordings to avoid perturbation of the intracellular chloride concentration. To ensure there was no membrane leakage, we measured the series resistance and membrane integrity of the perforated patch during the entire recording. In our study, resting membrane potential (-70 ± 8 mV, \(n = 7\)) was very close to the \(E_{GABA}\) in wild-type striatum (-72.5 ± 3.9 mV, \(n = 7\)). GABA may exert shunting inhibition under this condition or slightly hyperpolarizing inhibition if MSNs are in the up state or a depolarized stage. It is worth noting that intracellular recording studies in anesthetized rodents showed that MSNs display periodic shifts between the down state (ie, a hyperpolarized membrane potential stage with a membrane potential of approximately -80 mV) and the up state (ie, a depolarized stage with a membrane potential of approximately -60 mV). Thus, the hyperpolarizing inhibition (ie, \(E_{GABA} < \text{resting membrane potential}\) in vivo during the up state can be important. Indeed, we observed a bimodal distribution of membrane potentials in the present study. Given that the spike threshold in MSNs is approximately -40 mV, both regimes (ie, shunting inhibition, resting membrane potential < \(E_{GABA}\) < spike threshold; hyperpolarizing inhibition) may coexist under wild-type
striatum, and GABAergic synapses can exert inhibitory actions on MSNs. In the HD striatum, the resting membrane potential (-72 ± 6 mV, n = 9) was less than the \(E_{\text{GABA}} \) (-53.5 ± 5.5 mV, n = 11). Under this condition, the \(E_{\text{GABA}} \) could be greater than or equal to the resting membrane potential during the down- and up state, resulting in a depolarizing or shunting inhibitory response (Fig. 5C). Such an alteration is expected to greatly affect the functions of MSNs, which integrate glutamatergic inputs from the cortex and project GABAergic signals to neurons downstream of the basal ganglia nuclei. The inhibitory stimuli from GABAergic interneurons and the lateral inhibitory connections with neighboring MSNs form a collateral network of local inhibition. The altered GABAAR signaling in MSNs might affect the local excitability of MSNs and change the overall output of striatum. Of note, the slicing procedure by itself might alter Cl\(^-\) gradients during slice preparations. Such an effect might be compounded in neurons from R6/2 mice, which are more susceptible to inflammation than WT neurons. In addition, R6/2 mice are prone to epileptic seizures, which themselves might alter Cl\(^-\) reversal potentials. Collectively, we cannot rule out the contribution of both factors (ie, the slicing procedure and epileptic seizures) to the positive shift in striatal \(E_{\text{GABA}} \) of R6/2 mice.

The upregulation of NKCC1 in adult brains has been known to convert neuronal responses to GABA, from a hyperpolarizing to a depolarizing response. Such a GABA-mediated depolarizing signal may elevate intracellular [Ca\(^{2+}\)], enhance expression of the pan-neurotrophin receptor p75\(^{NTR}\), and cause neuronal death. Importantly, treatment with bumetanide is able to ameliorate the toxicity induced by NKCC1 upregulation. Consistent with the hypothesis that NKCC1/p75\(^{NTR}\) is critical for neuronal survival, blockage of p75\(^{NTR}\) is associated with beneficial effects on corticostriatal synaptic function in HD mice. Previous studies have also reported that blockade of NKCC1 reduces glutamate-induced neurotoxicity, decreases the accumulated ubiquitin-conjugated protein aggregates, and improves proteasome function in ischemic neurons. This is important because clearance of mHTT is primarily mediated by the ubiquitin-proteasomal system, which is impaired in HD. In HD mice (R6/2), we found that chronic treatment with bumetanide slightly decreased the size of mHTT aggregates, which may be ascribed to the improved proteasome activity with NKCC1 inhibition, as was found in ischemic neurons. Total mHTT count was likely not affected by bumetanide because mHTT aggregates appear in the brain of R6/2 mice at the age of 4 weeks, whereas the treatment with bumetanide did not start until 7 weeks of age. Thus, earlier administration of bumetanide may have more significant effects on the mHTT aggregates of HD mice.

Phosphorylation mechanisms play an important role in the regulation of NKCC1. The WNK/SPAK kinase complex, composed of WNK (with no lysine) and SPAK (SPS1-related proline/alanine-rich kinase), effectively phosphorylates and activates NKCC1, whereas protein phosphatases (such as PP1 and PP2A) dephosphorylate NKCC1 and decrease the activity of NKCC1. Earlier studies showed that bumetanide treatment inhibited the activity and phosphorylation level of NKCC1 in cancer cells and dorsal root ganglia neurons, respectively, which is consistent with our data. It is unclear whether bumetanide inhibits NKCC1 activity directly or indirectly via the modulation of upstream kinases and/or protein phosphatases in HD.

Alterations in the level of NKCC1 and the depolarizing GABA action have been linked to a number of neuropsychiatric disorders. Inhibition of NKCC1 has been proposed to serve as a potential treatment for autism, schizophrenia, and seizure in clinical trials and case reports. These reports argue for a critical role of aberrant GABAergic signaling in neurological and psychiatric disorders. In the current study, our findings suggest that the upregulation of NKCC1 and the positive shift of the \(E_{\text{GABA}} \) were pathogenic in HD because pharmacological inhibition or genetic ablation of NKCC1 restored the motor deficits of HD mice. Our data show, for the first time, that aberrantly increased striatal NKCC1 may serve as a causal link for the motor deficits in HD. Our findings advance the current knowledge of GABAergic signaling in HD pathogenesis and provide a new therapeutic approach toward HD via modulating the function of NKCC1. Notably, in addition to being able to treat the motor dysfunction of HD, bumetanide has also been shown to restore hippocampal synaptic plasticity and memory in a mouse model of Down syndrome. Given that neuroinflammation has been implicated in most neurodegenerative diseases (including Parkinson’s disease and Alzheimer’s disease), upregulation of NKCC1 may also play a critical role in other neurodegenerative diseases.

Acknowledgments: We thank David E. Szymkowski and Xencor (Monrovia, CA) for providing XPro1595. No author reports financial relationships with commercial interests.

References

10. Allen KL, Waldvogel HJ, Glass M, Faull RL. Cannabinoid (CB(1)), astrocyte Kir4.1 ion channel de

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.